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A marching iterative method for solving the three-dimensional incompressible and steady 
reduced Navier-Stokes equations in general orthogonal coordinate systems is described with 
the velocity and the pressure as dependent variables. The coupled set of the linearized linite- 
difference continuity and momentum equations are solved iteratively without any splitting or 
factorization errors. Each iteration consists of spatial marching from the upstream boundary 
to the downstream boundary. The discrete continuity and the two linearized crossflow 
momentum equations are satisfied at each marching step, even when the mainstream momen- 
tum equation is not converged. This solution procedure is equivalent to the solution of a 
single Poisson-like equation by the successive plane over relaxation method, while other 
available solution methods employ a Jacobi-type iterative scheme and therefore are less 
efficient. Several properties of the numerical method have been assessed through a series of 
tests performed on the laminar incompressible flow over prolate spheroids at intermediate 
incidence. R“ 1990 Academx Press. Inc 

1. INTRODUCTION 

The ability to efficiently compute complicated three-dimensional, viscous, incom- 
pressible flows over slender bodies is of great importance to contemporary 
aerodynamics. Several methods are available for solving the compressible 
Navier-Stokes equations. The algorithm for the numerical solution of the three- 
dimensional incompressible Navier-Stokes equations are less well developed. One 
reason for this situation is the absence of a pressure time derivative in the con- 
tinuity equation. Some approaches to overcome this issue have been suggested. In 
the artificial compressibility method [2, 81 a fictitious pressure time derivative, 
which vanishes at the steady state, is added to the continuity equation. In the frac- 
tional-step method [3, 5, 71 each time step is split into two or more stages. Usually, 
in the first stage the momentum equations are solved for an approximate value of 
the velocity. In the second step, the pressure field, which corresponds to a 
divergence-free velocity, is computed and the velocity field is accordingly corrected. 

The computational cost of the solution of the three-dimensional Navier-Stokes 
equations is rather high. Therefore, simpler and more economical models of viscous 
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flows have been sought. The well-known boundary layer equations are an 
asymptotic approximation of the Navier-Stokes equations for high Reynolds 
number flows. This approximation imposes the pressure field from an outer solu- 
tion and neglects all diffusion terms except in the normal direction. The boundary 
layer equations are parabolic and therefore can be solved efficiently by marching 
methods, see for example Ref. [ 161. Good results have been obtained in most three- 
dimensional boundary layer computations for attached flow regions. However, 
mathematical and numerical instabilities have been detected near the anticipated 
location of separation lines and no solutions could be obtained in flow-separated 
regions. 

The singular behavior of the boundary layer solutions may be resolved by 
applying inverse methods. Van Dalsem and Steger [ 1 S] have solved the unsteady 
boundary layer equations for the flow over a 6:l spheroid at an incidence of 30” by 
specifying the wall shear instead of the outer pressure in flow separated zones. 
No singular behavior was found near the separation line. 

Interactive boundary layer schemes are popular for solving two-dimensional 
weakly separated flow regions, e.g., Veldman [19]. In these methods, the solution 
of the outer flow is coupled with the viscous flow solution. In order to circumvent 
the singularity of the boundary layer equation near separation, the inverse formula- 
tion should be used to solve the separated region. The extension of the method to 
three-dimensional flows is difficult, see Bodonyi and Duck [ 1 ] and it is not obvious 
whether the three-dimensional interactive boundary layer solution is more efficient 
than the solution of the whole flowfield by a more complete mathematical model. 
Moreover, the validity of the boundary layer approximation in regions with exten- 
sive flow separation is questionable. 

The reduced Navier-Stokes (RNS) and the thin layer (TL) approximations 
occupy the middle ground between the Navier-Stokes equations and the boundary 
layer equations. In the RNS approximation the diffusion terms are neglected along 
one coordinate line which approximately coincides with the mainstream direction. 
In the TL approximation the circumferential diffusion is neglected as well, and only 
the diffusion terms normal to the body are retained. However, unlike the boundary 
layer approximation, the pressure field is not predetermined but is one of the 
unknowns in both the TL and the RNS approximations. Rubin [12] showed for 
high Reynolds number flows that the RNS equations contain all the important 
terms of the Navier-Stokes equations. Rosenfeld [9] showed for the incompressible 
case that the ‘RNS and TL equations are still elliptic, although of reduced order. 
Therefore, both the RNS and the TL equations do not suffer from any mathemati- 
cal or numerical singularities and for slender bodies they yield solutions which are 
very similar to those obtained from the Navier-Stokes equations. 

In the artificial compressibility or fractional-step methods, the reduced ellipticity 
of the steady incompressible TL or RNS equations cannot be fully exploited to save 
computational resources, since these methods essentially advance the solution in 
time (either real or fictitious). Minor savings are obtained only due to fewer 
algebraic operations required for the computation of the viscous terms. Rubin and 
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Lin [13] have proposed for the two-dimensional case a solution method which 
takes advantage of the simplified character of the equations. The elliptic RNS 
differential equations are discretized by forward differencing of the streamwise 
pressure gradient and backward differencing of the streamwise convection terms. 
This discretization is consistent with the mathematical character of the RNS 
equations. 

Unlike other incompressible methods of the primitive equations, the discrete 
coupled continuity and momentum equations are solved without any modification 
or reformulation of the continuity equation. “Global iterations” are used to solve 
iteratively the set of the algebraic equations. Each global iteration consists of 
marching line by line from the upstream boundary to the downstream boundary. 
On each marching step, the coupled set of the discrete continuity and momentum 
equations along the lines normal to the marching direction are solved 
simultaneously. 

Israeli and Lin [4] improved for the two-dimensional case the convergence 
properties of the method by modifying the discrete streamwise momentum equation 
during the iterative solution procedure. The efficiency of the modified method stems 
from its equivalence to the iterative solution of a single two-dimensional elliptic 
equation by the successive line over relaxation (SLOR) procedure, while the 
fractional step or artificial compressibility methods, as well as the original method 
of Rubin and Lin [13] are equivalent to a Jacobi-type method. For a two-dimen- 
sional case, Rubin and Reddy [14] and Rosenfeld and Israeli [IO] exploited the 
improved smoothing properties of the modified method to accelerate the con- 
vergence of the global iterations by a multigrid procedure. 

The extension of that method, which directly couples the solution of the con- 
tinuity and the momentum equations, to the three-dimensional case is non-unique. 
The present work suggests such an extension for solving the three-dimensional, 
viscous, incompressible, and steady reduced Navier-Stokes equations in generalized 
orthogonal coordinate systems. The method takes advantage of the reduced 
ellipticity of the equations to enhance the efficiency of the solution procedure by 
devising a three-dimensional iterative scheme which is equivalent to the solution of 
a single Poisson equation by the successive plane over relaxation method. The 
properties of the method are discussed in the light of some numerical experiments. 
It has been found that this method may be a good alternative for the solution of 
the steady incompressible reduced Navier-Stokes equations. It offers better 
efficiency than the fractional-step or the artificial compressibility methods due to 
improved convergence rate and lower storage requirements. 

2. MATHEMATICAL FORMULATION 

The RNS equations are written in a general axisymmetric curvilinear and 
orthogonal coordinate system using primitive variables. The three orthogonal coor- 
dinates p, 8, and 5 run approximately in the normal, circumferential, and 
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mainstream directions respectively, see Fig. 1. One-dimensional stretching functions 
are used to define a modified coordinate system q, s, t, where grid points can be 
clustered in high gradient flow reegions without losing orthogonality. The restric- 
tion of axisymmetric coordinates is made to simplify the coding and reduce com- 
puter resources. The method itself is applicable to general orthogonal coordinate 
systems without any modifications. 

The physical components of the velocity in the coordinate directions, 
(V,, V,, V,), are scaled according to 

u=h V 4 4’ u=h,V,, MJ = h, V,, (1) 

where h,, h,, h, are the Lamme coefficients. The scaled velocity components 
(u, o, w) are equal to the contravariant components of the velocity, multiplied by 
the square of the corresponding Lamme coefficients, e.g., u = hi Uy, where Uy is the 
contravariant velocity component along q. 

In an orthogonal coordinate system, the mixed derivatives in the diffusion terms 
can be eliminated by using the continuity equation. The resulting non-dimensional 
laminar RNS equations for an incompressible and isothermal flow consist of the 
continuity equation 

d(au) + 6su) + @hw) = () --- 
zq as dt ’ (2) 
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FIG. 1. The coordinate system and the computational domain. 



INCOMPRESSIBLE RNS 259 

and the momentum equations in the q, s, t directions, respectively, 

ap i a iau =--z--+- - -- 
(( > as Re a4 6 a4 

where 

1 
a=--, P=& f 

h: .\ 
y=--Zj. 

f (4) 
o=aJ, r=/IJ, 6 = yJ, 

and the Jacobian J is given by 

J= h,h,h,. (5) 

A characteristics analysis of the three-dimensional RNS equations [9] reveals 
that it has two elliptic and four parabolic characteristics. Therefore, the three-dimen- 
sional RNS equations are equivalent to a system of one second-order elliptic equa- 
tion and two second-order parabolic equations and are well posed if three boundary 
conditions are specified on all boundaries, except at the downstream boundary 
where only one condition is required. In comparison, the Navier-Stokes equations 
have six elliptic characteristics and therefore require three boundary conditions on 
all boundaries. The proper number of boundary conditions should be chosen from 
the three velocity components and the pressure. 

In the present work only external flows over a body are considered. Out of the 
possible set of boundary conditions, the following are chosen. At the upstream 
boundary (denoted by the subscript “up”), the three components of the velocity are 
specified (for example, from a boundary layer computation) 

u=uup, u=uup, M’ = w”p. (ha) 

The downstream boundary is usually an outflow boundary where in many applica- 
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tions the conditions are not known. One of the advantages of the RNS approxima- 
tion is that only one condition should be specified there. The streamwise derivative 
of the pressure is a simple choice, 

aP aP 

-=(> at at po,’ (6b) 

where the subscript “pot” stands for the potential value. 
Three boundary conditions should be specified at the outer boundary. The 

admissible conditions depend strongly on the location of the boundary. If the outer 
boundary is very far from the solid body, a uniform velocity may be specified there. 
For high Reynolds number flows, the distance between the outer boundary and the 
body can be decreased and some saving in the required number of mesh points may 
be achieved, if the velocity is specified from the inviscid solution, e.g., from a poten- 
tial solution. If the boundary is placed inside the region of strong viscous-inviscid 
interaction, the prescription of the pressure may produce numerical instabilities 
similar to the singularity found in the boundary layer approximation near flow 
separated zones. However, this singularity results from the boundary conditions 
and is not an inherent property of the differential equations. 

In the present study we assume that the outer boundary is in a potential flow 
region. We chose to specify the streamwise and circumferential velocity components 
and the pressure 

v = VP01 > U’ = wpot ) p = ppot. (6~) 

The normal scaled velocity component u is not given at this boundary. Thus, the 
displacement effect due to the development of the viscous boundary layer is 
computed rather than prescribed and it can be used as a driving mechanism for a 
viscous-inviscid interaction algorithm. 

At a solid surface, the no-slip and the no-injection conditions are enforced 

u=v=~l=o. (6d) 

Other boundaries may include periodic or symmetry boundaries. 

3. DISCRETIZATION 

The differential equations are discretized by finite-differences. A uniform mesh is 
spread over the computational domain (q, S, t) with indices (i, j, n) and mesh size 
(Aq, As, At), respectively. The variables are defined in a staggered location as shown 
in Fig. 2. The pressure is not defined at the center of the computational cell, as is 
usually done in fractional-step methods, but at the same point as the streamwise 
velocity component u’. This arrangement has been used by Rosenfeld and Israeli 
[lo] in a two-dimensional problem for obtaining second-order accuracy in the 
streamwise direction as well. 
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FIG. 2. The definition of the variables in the staggered grid. 

The continuity equation is approximated at the center of each computational cell 
by a second-order central approximation 

gn+ 1/2u- tic l,n+ 1/2ui- I 

4 

+ 
r,~+,,2(v-“,~,)+6w-6,w,=o. 

AS At 

For simplicity, the default indices i, j, and n + 1 are omitted whenever no ambiguity 
arises. The momentum equations are discretized in a staggered grid and the 
resulting algebraic equations can be written as 

where V,, = (u,, v,, w,)~. The matrix A, + ,i’2 includes terms which result from the 
streamwise convection, while Sp, and Yn + 1,2 include the crossflow convection and 
diffusion terms, and the source terms, respectively. The vector G,P, results from the 
pressure gradient term and %?,,+ , includes the boundary conditions as well as the 
pressure at the station n + 1, but only in the t-momentum equation. In regions 
where the w-component velocity is reversed, %?,,+ , contains also the velocity 
components at the downstream station n + 1. 

The centering of the crossflow velocity derivatives along the t-direction in the 
momentum equations (8) is determined by the parameter Q,,. The values 8c = 0 and 
8,. = 1 correspond to calculating 9;pV at the upstream station n (forward Euler 
scheme) or at the downstream station n + 1 (backward Euler scheme), respectively. 
Only the choice 13, = i (Crank-Nicholson scheme) results in a second-order 
accurate scheme in the t-direction. In the present application, the value 8, = 1 has 
been chosen to enhance the stability properties of the scheme (see Section 5.2), at 
the expense of losing second-order accuracy in the t-direction. 
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A second-order central difference approximation of the pressure derivatives can 
be obtained from 

(9) 

due to the staggering of the momentum equations. This approximation, along with 
the approximation of the continuity equation (7) is consistent in the sense that the 
regular seven-point finite difference stencil of the underlying equivalent Poisson 
equation for the pressure may be derived discretely. Note, however, that in the 
present method a Poisson equation (which in some methods replaces the continuity 
equation) is neither formulated nor explicitly solved. 

The crossflow derivatives of the diffusion terms are approximated by second- 
order accurate central differences, while the crossflow derivatives of the convection 
terms are computed from 

av c+l- v,-, ~,+,-2~,+ v,-, 
aSx=a 2Ax 

- .sa 
2Ax 

+ O(eAx), (10) 

where a refers to any one of the velocity components (see Eqs. (3)), x is a crossflow 
coordinate (q or s), and m is the index along that coordinate. The parameter E 
governs the amount of numerical diffusion (often called the implicit second-order 
smoothing term) added to enhance the stability properties for high Reynolds number 
flows. The value E = 0 corresponds to second-order central approximation, while 
E = 1, which has been chosen in most of the present computations, corresponds to 
first-order upwind differences. Second-order accuracy in the crossflow directions 
can be restored by choosing E = O(Ax). It should be emphasized that all the 
streamwise derivatives of the velocity, as well as the continuity equation and the 
pressure derivatives, are approximated by second-order central difference 
approximation without any artificial diffusion, 

The non-linear difference equations have been linearized by a single Newton- 
Raphson iteration. The discrete equations are re-formulated so that the increment 
of the solution ddt is the unknown 

+=4,,+, -A,, where Qjn+l=(~,+l,u,+l,~,+I,P,)r. (11) 

The unknown velocity components belong to the step n + 1 while the unknown 
pressure is computed at the previous step n. It is a direct consequence of the mixed 
elliptic-parabolic character of the RNS equations. The pressure at the step n + 1 
introduces the elliptic nature of the differential equations into the discrete 
approximation. The difference equations for each crossflow plane of constant index 
n can be written as 

MnA#=hn+,, (12) 
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where the unknown is Ad. The asymmetric coefficient matrix M, depends only on 
terms from the crossflow plane IZ and has a structure similar to that resulting from 
a live-point discretization of a two-dimensional Poisson equation in an orthogonal 
coordinate system. However, each entry is a sub-matrix of order 4 x 4. correspond- 
ing to the four unknowns of each computational cell (u, u, W, P), The vector h”+’ 
depends on the downstream station n + 1, since it includes the boundary conditions 
at that station and the pressure from the c-momentum equation, as well as the 
velocity in regions of reversed flow along the t-direction. 

4. SOLUTION METHOD 

4.1. The Plane Iterative Method 

The finite difference form (12) which is an outcome of the mathematical charac- 
ter of the RNS equations, can be utilized to devise an efficient iterative scheme. One 
posssibility is to solve simultaneously the sub-block of equations corresponding to 
each step n= 1, 2,. .., ,V by computing h”+’ from the previous iteration 

IV;+’ Aq5h+‘=hj:+,, (13) 

where k is the iteration level. One complete sweep from the upstream boundary 
n = 1 to the downstream boundary n = JV is usually called a “global iteration.” The 
global iterations are repeated until the convergence of (13) is achieved for all n. 

This solution method is equivalent to an iterative solution of a second-order 
three-dimensional elliptic equation for the pressure. The velocity components can 
be viewed as auxiliary variables which appear in the governing equations and in the 
boundary conditions. This hierarchy of the dependent variables in the RNS equa- 
tions is a result of the existence of two elliptic characteristics, which correspond to 
a Poisson-like equation for the pressure, and four parabolic characteristics, which 
govern the nature of the velocity field. A significant reduction in the storage can be 
achieved since only one three-dimensional variable (the pressure field) must be 
stored while the velocity field is re-generated during the plane by plane marching 
process. Alternative solution methods require the storage of ,four three-dimensional 
fields (the pressure and the three velocity components). 

The simultaneous solution of the finite difference equations at each crossflow 
plane has favorable effects on the numerical properties of the solution procedure. 
The discrete linearized crossflow momentum equations are satisfied to the con- 
vergence error of the plane equations, even when the global iterations have not yet 
converged, since their right-hand-side terms do not depend on the step n + 1 
(provided that no reversed velocity exists in the marching direction). The discrete 
continuity equation is always satisfied and no smoothing terms have been added to 
it. The global iterations are required to satisfy the mainstream momentum equation 
(which has P, + , as an unknown). 
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4.2. Modification of the Iterative Solution Method 

A good iterative solver of the finite difference equations should take advantage of 
the special mathematical character of the differential equations. The RNS equations 
are equivalent to a single second-order Poisson-like equation and to two second- 
order parabolic equations. The elliptic nature of the system is dominant, as far as 
the numerical properties are considered. Therefore, a well-constructed solver of the 
RNS equations should solve efficiently the underlying Poisson equation. 

The algorithm described in the last section, which is an extension to the three- 
dimensional case of the scheme given by Rubin and Lin [ 131 and Rubin and Reddy 
[14], does not yield good convergence rate of the global iterations because it 
corresponds to an inefficient iterative solver of an elliptic equation. For the 
two-dimensional Cartesian case, Israeli and Lin [4] devised a modification which 
makes the iterative solution procedure equivalent to the solution of a single second- 
order elliptic equation by the SLOR method, with all its favorable numerical 
characteristics. This method was applied to two-dimensional curvilinear orthogonal 
coordinate systems by Rosenfeld and Israeli [lo]. 

The extension of the method to the three-dimensional case has not been done yet. 
Actually, this extension is non-unique. The iterative scheme for the solution of the 
coupled momentum and continuity equations may be chosen from a wide variety 
of methods such as the SLOR method, ADI-like schemes or plane relaxation 
schemes. However, it is not always easy to equivalence the solution procedure to an 
efficient iterative solver of a second-order Poisson-like equation. The present work 
suggests that a relatively simple modification of the t-momentum equation may be 
devised if (12) is solved by the plane iterative method as described in the previous 
section. The finite-difference approximation of the pressure derivative in the 
r-momentum equation should be modified to 

(14a) 

The first term in 
approximation (9) 

n= 1, 

n = 2, 3, . . . . 

the left-hand side of (14a) is the usual central difference 
and the modification term S, is defined recursively by 

sf=o 
,v, s:=s:-, +b,,-,,*(P”,-‘-Pn*+P:_ ,-P,*-l). (14b) 

The unknown P,* is a temporary value. The final value of the pressure at station 
n for the k level iteration is computed from 

Pf:=oP,*+(l-o)P;-‘, (14c) 

where o is an over-relaxation parameter. It can be easily verified that when con- 
vergence is achieved, S, 3 0 for all n and therefore the original discrete t-momentum 
equation is recovered. The modification (14) has been devised so that the iterative 
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solution of the incomporessible three-dimensional RNS equations is equivalent to 
the successive plane over relaxation (SPOR) method for the solution of a single 
three-dimensional second-order elliptic equation. Additional details are given by 
Rosenfeld [ 91. 

The convergence properties of the two-dimensional method have been studied by 
Rubin and Reddy [ 143 and by Rosenfeld and Israeli [lo]. In the three-dimensional 
case, if the solution method (12) with the modification (14) is adopted, the numeri- 
cal properties of the method are similar to the SPOR method. In particular, for 
o = 1 the maximal eigenvalue of the iteration matrix is 

for 
nAL 
y< 1, 

,,1 
(15) 

where AL is the physical step size in the marching direction and Y, is a typical 
dimension of the crossflow plane (see Rosenfeld [9]). For large enough xAL/Y, 
(typical to high Reynolds number flows without massive separation) the con- 
vergence is very rapid. However, when nAL/Y,,, is small the convergence may 
degrade and in some cases the global iterations would not converge due to 
nonlinear effects. Yet, Rosenfeld and Israeli [lo] have found for two-dimensional 
cases that the application of a multigrid procedure can considerably enhance the 
convergence properties even for small T-CAL/Y,. 

The simultaneous solution of the difference equations at each marching step 
improves the convergence properties of the global iterations but may require 
excessive computing time. Therefore, an efficient algorithm should be applied to the 
simultaneous solution of (12) for each n. In the present work, a version of the 
generalized minimal residual (GMRES) method [15, 20, 211 is used with an AD1 
block-factorization preconditioning. The GMRES method is a conjugate-gradient 
type method which is directly applicable to the present asymmetric coefficient 
matrix M, but requires large additional storage. Details on the application of the 
GMRES method are given in Appendix A. 

Summary of the solution method. 

(a) Guess a pressure field. 
(b) Perform one global iteration: 

(1) Start marching from the upstream crossflow station n = 1. 
(2) Solve Eqs. (13) simultaneously for the crossflow station n by the 

GMRES method. 
(3) Proceed to the next crossflow station n = n + 1 and repeat step (b2). If 

n > .,V the present global iteration is completed, goto step (c). 

(c) If the convergence criterion of the global iterations is met, end iterations; 
else repeat step (b) 
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5. NUMERICAL EXPERIMENTS 

Following a series of two-dimensional validation cases, the laminar flow over a 
prolate spheroid at incidence has been computed as a three-dimensional test case. 
The interest of the present study is focused on the investigation of the numerical 
properties of the method rather than the physical aspects of the flowfield. 

An analytical orthogonal body-fitted coordinate system (p, 8, 5) can be generated 
in this case, 

X= a sinh p(q) sin t(t) cos e(s), 

Y = u sinh p(q) sin t(t) sin H(s), 

Z= a cash p(q) cos t(r), 

(16) 

where (X, Y, Z) is the Cartesian coordinate system, a = d=Jr, and r is the 
major to minor axes ratio. The functions p(q), t(t) are given hyperbolic stretching 
functions and 8 = 7~s. The sections 9 = 0” and 0 = 180” correspond to the windward 
and to the leeward symmetry planes, respectively. 

The computational domain covers most of the spheroid. The upstream boundary 
is placed some distance downstream of the forward stagnation point. The boundary 
condition there for the streamwise direction velocity component is approximated by 
a KarmanPohlhausen velocity profile with a displacement thickness given from 
the integral boundary layer solution of Stock [17] of a similar case. The two 
crossflow components are specified from the potential solution. The downstream 
boundary is located ahead of the rear stagnation point. Here, the pressure 
derivative along the streamwise direction is specified from the potential solution. At 
the outer boundary the pressure and the circumferential and the streamwise velocity 
components are specified from the potential solution. 

The quantities to be presented in the following sections are the pressure, the two 
components of the normalized skin-friction coefficient and an integral displacement- 
like thickness of the boundary-layer. The normalized skin-friction coefficient on the 
spheroid, C, = (CI: <, C, (,), is defined by 

(17) 

where r,V is the skin friction vector on the surface, pX is the (constant) density, V, 
is the far upstream uniform velocity, and Re is the Reynolds number (based on the 
major axis of the spheroid). Among several possibilities, the integral thickness 6* is 
defined by 

(18) 

where ( V,), = oou, is the value of the t-component velocity at the outer boundary. 



INCOMPRESSIBLE RNS 267 

The remainder of this chapter will elaborate on some numerical experiments 
which have been performed to investigate the properties of the scheme (13)-( 14). 
Additional results and comparisons with other numerical and experimental works 
are given in Refs. [9, 111. Section 5.1 presents numerical experiments for assessing 
the importance of the simultaneous solution of the difference equations at each 
marching step, as well as some properties of the global iterations. Section 5.2 
elaborates on the spatial accuracy of the scheme and Section 5.3 discusses the effect 
of the boundaries location on the solution. Section 5.4 gives sample results for the 
flowfield over a prolate spheroid at incidence. 

5.1. Iterative Solution of‘ the Discrete Equations 

An important conclusion of the test runs is that the simultaneous solution of the 
difference equations (13) at each marching station is essential for ensuring accurate 
solution and favorable convergence properties of the global iterations. This was 
clearly demonstrated by attempts to solve (13) only approximately by an iterative 
block-AD1 method (without using the GMRES method), rather than solving it 
simultaneously. Figure 3 shows the skin-friction coefficient and the integral thick- 
ness as a function of the number of ADI iterations KMAX performed at each 
marching step (an identical global convergence criterion has been used in all cases). 
The choice KMAX = 1 corresponds to marching along the mainstream direction by 
an ADI method. Greater values of KMAX result in more accurate solutions at each 
step because the splitting errors of the iterative ADI method decrease with increas- 
ing KMAX. As Fig. 3 demonstrates, the solution obtained by an AD1 marching 
scheme (KMAX = 1) is quite different from the solutions obtained for KMAX = 4 
and KMAX = 7, where the solution of (13) is more accurate. The differences in the 
results are significant, especially in the circumferential component of the skin fric- 
tion. Further experiments prove that the inaccurate solution of (13) (large splitting 
errors) may introduce oscillations, especially near a solid wall and when strong cir- 
cumferential reversed flow exists. Consequently, Eq. (13) is solved simultaneously in 
all the following computations by the GMRES method with a convergence criterion 
of IO-’ (based on the L2-norm of dd). 

The convergence history of the global iterations for the flow over two spheroids 
of axes ratio 6:l and 4:l at 10” incidence and Reynolds number of lo6 is shown in 
Fig. 4. A grid of 24 x 24 x 32 mesh points is used in the p, 8, and < directions, 
respectively. The p coordinate value at the spheroid surface and at the outer bound- 
ary is ROIN and ROUT, respectively. The global iteration convergence error E is 
defined by 

(19) 

where N is the total number of mesh points. This definition is adapted from multi- 
grid practices and is different from the usual L2-norm definition (here the sum of 
the squares is multiplied by N”3 rather than divided by N and therefore the present 
criterion is more stringent). In accordance with the prediction of (15), the con- 
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FIG. 3. The effect of the inaccurate solution of the plane equations (GMRES is not used). 
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FIG. 4. Convergence history of the global iterations. 

vergence rate worsens as the distance between the outer and the inner boundary 
increases. The convergence may not be monotonic and might even deteriorate if the 
outer boundary is far from the spheroid. This limitation is not severe for high 
Reynolds number flows without massive separation--e.g., when the flow is confined 
to a relatively thin region around the body. The computation for lower Reynolds 
numbers or for flows with large separated regions would require a multigrid proce- 
dure to obtain reasonable convergence rate, see Rosenfeld and Israeli [lo]. Figure 
5 reveals no need to choose very small values of the global iteration’s convergence 
criterion F. Usually 10-20 global iterations are required to achieve convergence 
(6 < 10p8). The CPU time is 1 to 2 hr on the IBM 3081D scalar computer. 

5.2. Accuracy Tests 

The pressure derivatives and the streamwise velocity derivatives in the momen- 
tum equations, as well as the velocity derivatives in the continuity equation are 
approximated by central second-order-accurate differences. However, to enhance 
the stability properties of the marching scheme and to remove sensitivity to the 
upstream boundary conditions, the streamwise centering of the crossflow velocity 
derivatives are backward approximated by choosing 0 = 1 in (8). This degrades the 
accuracy of the scheme to first-order in the t-direction. Extensive convergence tests 
have been conducted for successively relined grids in the t-direction. Linear con- 

581.‘88,‘2-2 
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vergence with the t-mesh-size was found for the quantities tested, as expected for a 
first-order accurate scheme. The differences in the solutions were insignificant for 
NM > 24. 

A similar convergence test could not be pursued in the crossflow directions 
because of the excessive computing time required. Some partial tests have been 
made by employing two meshes with a different number of mesh points in the 
q-direction, ZM = 16 and IA4 = 24, see Fig. 6, or in the s-direction, JM = 16 and 
JM= 24, see Fig. 7. The differences between the solutions are small, proving that 
in the present domain of solution a moderate number of grid points may yield 
reasonable solutions. 

The amount of first-order numerical diffusion added to the central difference 
approximation of the lateral convection terms depends on the parameter E in (10). 
At small angles of attack no artificial dissipation is required (E = 0). At larger 
incidences, significant circumferential velocity is developed and numerical dissipa- 
tion should be switched on (E > 0). Diagonal dominance is assured if E = 1 (upwind 
approximation), and smooth solutions are obtained for all Reynolds numbers at the 
cost of increased numerical diffusion. Several numerical experiments have been con- 
ducted in the present study to investigate the influence of the numerical diffusion. 
These experiments show that the degradation in the accuracy of the results is 
acceptable for the cases studied in this work. Figure 8 compares the solutions 
obtained for E = 0 and E = 1, for a 6:l spheroid at the section Z= 0.142 at a 
moderate angle of attack (10’) and a Reynolds number of 1.6 x 106. At this 
crossflow section the circumferential component of the velocity is moderate and no 
significant differences can be detected between the two cases. Some disagreement 
can be found for CL, and 6* near the symmetry planes where the boundary layer 
is relatively thin and therefore the resolution of the first-order scheme might be 
insufficient. 

At higher incidence, the crossflow velocity is large and the numerical dissipation 
may adversely affect the solution, In these cases, the first-order accuracy is unaccept- 
able (see also Section 6). The present work considers only cases with intermediate 
incidences and therefore the choice E = 1, along with an adequate number of mesh 
points and a close outer boundary, is acceptable. The mesh spacing in the normal 
direction is small since the outer boundary is relatively close to the spheroid. Hence, 
sufficient resolution of the boundary layer is obtained even with the first-order 
scheme. 

5.3. Effect of the Boundaries Location 

Some tests have been conducted to study the effect of the location of the bound- 
aries. All the cases presented in this section refer to a 4:l spheroid at an incidence 
of 6” and Re = 106. Figure 9 shows the distribution of the skin-friction coefficients 
and the integral thickness S* at two axial sections, 8 = 90” and 6’= 135”. At each 
case, three different locations of the upstream, (Z,), downstream (Z,.) and outer 
boundary pO,, are considered (the surface of the spheroid is at p = 0.255). In the 
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major parts of the computational domain the solution is found to be independent 
of the location of the boundaries. 

Some oscillations near the upstream boundary can be observed in Fig. 9. The 
origin of these oscillations cannot be precisely identified. However, certain facts 
may suggest that it is related to the boundary conditions chosen for the circum- 
ferential velocity at the upstream boundary. As the reader may recall, the 
streamwise velocity profile has been specified from an integral boundary layer solu- 
tion, while the two crossflow components of the velocity have been approximated 
from the potential solution. The boundary layer approximation is a reasonably 
accurate condition and therefore the streamwise component of the skin friction is 
less sensitive to the location of the upstream boundary and no oscillations are 
generated. However, it appears that the potential approximation of the crossflow 
velocity components at the upstream boundary is less acceptable. Anyway, this 
behavior of the circumferential skin friction seems to have only a local effect which 
does not affect the solution downstream. 

Some oscillations are observed also near the downstream boundary at 
130” > 0 > 90”. This region is characterized by a very rapid growth of the boundary 
layer thickness (see the distribution of 6*) and the assumption that no interaction 
exists between the outer inviscid region and the viscous solution is not valid. 
Several numerical experiments have shown that if the outer boundary is placed 
inside the viscous region, oscillations occur and the iterative solution scheme may 
even diverge. These oscillations disappear when the outer boundary is moved into 
the inviscid (or even better, into the potential) region. 

One point should be re-emphasized: the RNS as well as the TL approximations 
are not singular near flow separated zones. All the indications tested suggest that 
the irregular solution near the downstream boundary is a result of the placement 
of the outer boundary in a strong viscous-inviscid interaction region, combined 
with the prescription of the pressure as a boundary condition (see also Sections 1 
and 6). 

5.4. Flow Field Solutions 

The present paper focuses on the description of the solution method of the 
three-dimensional RNS equations in generalized orthogonal curvilinear coordinate 
systems. Yet, some solutions of the flow field over slender spheroids at incidence 
will be briefly presented to demonstrate the capabilities of the procedure. 

Figure 10 compares the shear-stress vector plot with the experimental results of 
Kreplin et al. [6] for a flow over a 6:l prolate spheroid at an incidence of 10” and 
a Reynolds number of 1.6 x lo6 (based on the length of the spheroid). A grid of 
24 x 24 x 32 mesh points was employed in the normal, circumferential, and axial 
directions, respectively, with grid points clustered near the surface of the spheroid. 
It was found experimentally by Kreplin et al. [6] that most of the flow field is 
laminar except in regions of flow separation. In the laminar regions of the flowtield 
the agreement is usually good, bearing in mind the complexity of the flow held and 
the difficulties associated with measuring the skin friction in laminar regions 
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2 = 0.76 

v = 0.2 

1 \ 

: 

Frc. 12. The velocity field at the crossflow plane Z=O.76 fur a 4:i prolate spheroid at IO” incidence. 

FIG. 13. Enlargement of the velocity field at the leeward side of the crossflow plane (Z= 0.76). 
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region. Obviously, the present laminar calculation cannot reproduce such a 
phenomenon. 

Figure 11 gives the skin-friction lines (which coincide with the limiting 
streamlines) for the flow over a 4:l spheroid at an incidence of 10” and Re = 106. 
A mesh similar to the previous case has been used. At the second half of the body, 
the skin-friction lines appear to convergence into a swept line, which might be the 
separation line of a longitudinal vortex. Near the downstream boundary the flow is 
reversed along the mainstream direction. Figure 12 shows the projection of the 
velocity vector on the crossflow plane 2=0.76. The scale of the normal distance 
from the spheroid surface, p, is enlarged five times and only every second circum- 
ferential line is plotted for clarity. Figure 13 shows an enlarged view of Fig. 12 on 
the leeward side of the spheroid (here every circumferential line is shown). Substan- 
tial regions with circumferentially reversed flow can be found, but the onset of a 
vortex flow cannot be clearly observed. 

6. CONCLUDING REMARKS 

An efficient solver of the three-dimensional, steady, and incompressible RNS 
equations in primitive formulation is presented for curvilinear orthogonal coor- 
dinate systems. The discrete equations are solved by a plane-by-plane iterative 
marching method. The algebraic equations in each crossflow plane are solved 
simultaneously by a preconditioned GMRES method without any splitting errors. 
The iterative solution method has numerical properties similar to the SPOR 
method for the solution of a single second-order elliptic equation, while other exist- 
ing solution methods have the less favorable convergence properties of Jacobi-type 
iterative schemes. The good smoothing rates may be utilized to considerably reduce 
the computational time by employing multi-grid methods. Even without the 
implementation of a multi-grid solver, the required computational resources in 
terms of storage and CPU time allowed a solution of a relatively complicated flow 
field using a medium size scalar computer. 

Although the method is designed for the RNS equations, it can be extended to 
the solution of the full Navier-Stokes equations. The streamwise diffusion can be 
incorporated implicitly during the marching process (the downstream value of the 
velocity can be taken from the previous global iteration) or explicitly as a source 
term (which can be computed from the previous global iteration). This solution 
strategy may work equally well for the unsteady case by solving each time step by 
the present iterative, space-marching method. The present method may be a good 
alternative to the well-known artificial compressibility or fractional-step methods. 

A series of numerical experiments have been used to test the solution procedure 
and several of its properties. It is well established that second-order stable schemes 
result in more accurate solutions. Nevertheless, the present work obtains only tirst- 
order accurate solutions at high Reynolds numbers for the sake of stability. It has 
been shown that for moderate incidences and an adequate choice of the computa- 
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tional domain, the solutions obtained are acceptable. The accuracy of the method 
can be increased to second order by a Richardson extrapolation or double discret- 
ization (deferred correction) method without degrading the stability properties. The 
last method can be implemented relatively easily by using the first-order accurate 
scheme as the preconditioner of the GMRES method, but computing the residuals 
by a second-order-accurate approximation. This topic will be the subject of a future 
study. 

Numerous solutions of the TL equations obtained by other researches 
demonstrate that this approximation is not singular at separation. The same should 
apply to the RNS equations, which are a more complete approximation of the 
Navier-Stokes equations. However, the solutions may suffer a numerical instability 
or singular behavior when the outer boundary is located in regions of strong 
viscous-inviscid interaction. The source of the instability may be related to the 
prescription of the pressure at the outer boundary. Two remedies can be suggested: 
(i) moving the outer boundary out of the strong interaction region or (ii) using an 
interactive scheme where the viscous region affects the inviscid solution. 

In the two-dimensional case, Rosenfeld and Israeli [lo] have shown theoretically 
and numerically, the superiority of the present method over conventional RNS 
solution methods which do not introduce a correction term of the type (14). The 
efficiency of the present three-dimensional solution method in comparison with 
other available methods has not been tested numerically. However, the present 
space-marching scheme is expected to be more efficient from the computational 
point of view, since it is constructed to be equivalent to a Gauss-Seidel iterative 
scheme while the other solution method are equivalent to a Jacobi-type iterative 
scheme. In the case of the RNS equations, the present method is also more 
economical in terms of storage because only one three-dimensional array (the 
pressure field) has to be stored. 

The efficiency of the present method may be further improved if a line iterative 
scheme could be devised instead of the plane iterative scheme. However, it is not 
clear yet how a simple modification of the type (14) can be introduced so that the 
solution scheme of the continuity and momentum equations will be equivalent to 
a SLOR iterative scheme for the solution of a Poisson-like equation. 

APPENDIX A 

The present appendix gives some details on the solution of the linear system of 
equations (13) by a preconditioned GMRES algorithm [21]. Equation (13) is 
written as 

(AlI 
where for simplicity the indices n and k are omitted. In the present work, the pre- 
conditioning matrix Q is chosen to be a block approximate factorization method. 
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The application of the GMRES method, without explicitly computing Q-‘, results 
in the following algorithm. 

Given an approximation A# to (Al ) (Ado = 0), one cycle of GMRES advances 
the solution by first choosing k orthonormal search directions pl, pr, . . . . pk as 
follows: 

Compute residual 

Find 

Normalize 

Compute 

Forj= 1,2, 

r’ = h - MA@. 

p1 = r’. 

PI =PIIIIPl Il. 

d, =Mp,. 

k - 1, compute 

Qej = d,. 

(A21 

(A3) 

(A4) 

(A51 

(A61 

Find an orthonormal search direction pi+, from 

(A7) 

where 

such that 

Normalize 

b,=q;pi, (A81 

(P,+I?Pi)=o for i=l,2 ,..., j. (A9) 

Pi+1 =Pj+lIIlP,+I II. (A101 

Compute 

dj+ 1 =MPj+ 1. (All) 

The vectors r,, pi, ej, d, are of length J, where J is the number of unknowns in 
a crossflow surface. 
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The updating of A# is done by 

Ad ‘+ ’ = A#+ i aipi, (A121 
i=l 

where the coefftcients a, minimize the residual norm (r,, r,). The minimization leads 
to the least squares problem 

Da;+Bj=O, (A131 

where the terms of the matrix D are given by 

D,=di.dj (A14) 

and the vector B is computed from 

Bi = di . ri. (A15) 

The GMRES method has good convergence properties, but requires substantial 
additional storage for the 2k vectors pj, d,. The storage requirements could be 
decreased (but the computational work would be increased) by storing only pi and 
computing dj from (A6), (A7). The convergence of the method improves with k, but 
the storage and computational requirements increase. In the present work, 
k = 2&30 is found to be optimal. 

The present implementation uses a normal form of the equations to solve the 
least squares problem. Recently, more stable methods of solving the least squares 
problem have been suggested, see for example [ 15,201. The convergence properties 
of the present GMRES implementation have been found to be satisfactory 
(probably due to the preconditioning) and therefore the use of the new, more 
sophisticated, and computationally expensive procedures were not required. 
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